FISEVIER

Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Differential degradation for small heat shock proteins IbpA and IbpB is synchronized in *Escherichia coli*: Implications for their functional cooperation in substrate refolding

Xiaodong Shi a,b, Linxuan Yan b, Hanlin Zhang b, Kai Sun a, Zengyi Chang b,*, Xinmiao Fu b,*

^a Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China

ARTICLE INFO

Article history: Received 14 August 2014 Available online 28 August 2014

Keywords:
Protein degradation
Molecular chaperone
Small heat shock protein
IbpA
IbpB
Substrate proteins

ABSTRACT

Small heat shock proteins (sHSPs), as a conserved family of ATP-independent molecular chaperones, are known to bind non-native substrate proteins and facilitate the substrate refolding in cooperation with ATP-dependent chaperones (e.g., DnaK and ClpB). However, how different sHSPs function in coordination is poorly understood. Here we report that lbpA and lbpB, the two sHSPs of *Escherichia coli*, are coordinated by synchronizing their differential *in vivo* degradation. Whereas the individually expressed lbpA and lbpB are respectively degraded slowly and rapidly in cells cultured under both heat shock and normal conditions, their simultaneous expression leads to a synchronized degradation at a moderate rate. Apparently, such synchronization is linked to their hetero-oligomerization and cooperation in binding substrate proteins. In addition, truncation of the flexible N- and C-terminal tails dramatically suppresses the lbpB degradation, and somehow accelerates the lbpA degradation. In view of these *in vivo* data, we propose that the synchronized degradation for lbpA and lbpB are crucial for their synergistic promoting effect on DnaK/ClpB-mediated substrate refolding, conceivably via the formation of lbpA-lbpB-substrate complexes. This scenario may be common for different sHSPs that interact with each other in cells.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Molecular chaperones and proteases play key roles in the *in vivo* proteostasis respectively by assisting in the correct folding/refolding of proteins and degrading misfolded ones [1,2]. Small heat shock proteins (sHSPs), as a conserved family of molecular chaperone, are characterized by a low molecular mass of 12–43 kDa, formation of large oligomers and exhibition of ATP-independent chaperone activity [3–11]. They are able to bind non-native substrate proteins and facilitate the substrate-refolding under the help of other ATP-dependent molecular chaperones (e.g., Hsp70/DnaK and Hsp100/ClpB) under both *in vitro* and *in vivo* conditions [12–21].

In general, high eukaryotic organisms encode more than ten sHSP genes while most prokaryotic cells contain only one or two sHSP genes [4,22]. This raises an interesting question over the biological significance, if any, of the presence of multiple members

of the sHSP family in one organism or a cell. One possibility is that these different sHSPs work independently (i.e., with no additive or synergistic effects in chaperone functions). For instance, certain sHSPs from the bacterium *Deinococcus radiodurans* [23], the parasite *Toxoplasma gondii* [24] or plants [25] were reported to work in this way. Another possibility is that these sHSPs function in coordination with each other, given that different types of sHSPs from the same or closely related organisms were found to form hetero-oligomers [26–33]. In support of this, IbpA and IbpB, the sHSPs of *Escherichia coli* (*E. coli*) were reported to synergistically facilitate DnaK/ClpB-catalyzed substrate refolding [15,19–21].

We have been attempting to investigate the chaperone activity and mechanism of sHSPs under both *in vitro* [37–41] and *in vivo* conditions [42–44] for years. The present study is part of our efforts to understand the functional cooperation mechanism between different sHSPs of a cell. Here we examined the fate of sHSPs, instead of the substrates as widely undertaken [15,19–21], and found that the slow and fast degradation rates respectively for the individually expressed lbpA and lbpB were synchronized at an in-between degradation rate when they were co-expressed in cells. This considerably extends the earlier study [36], in which lbpA and lbpB were found to be degraded by the protease Lon

b State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China

^{*} Corresponding authors. Address: Room 204, School of Life Sciences, Peking University, Beijing 100871, China. Fax: +86 10 62751526.

 $[\]hbox{\it E-mail addresses: changzy@pku.edu.cn (Z. Chang), fuxinmiao@pku.edu.cn (X. Fu).}$

under *in vitro* conditions, respectively at slow and fast rates. The synchronized degradation may be a result or a prerequisite for the functional cooperation between lbpA and lbpB, conceivably through the formation of lbpA–lbpB-substrate complexes.

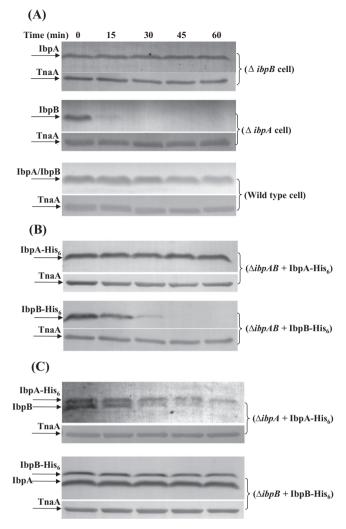
2. Material and methods

2.1. Bacterial strains

E. coli BW25113 wild type, $\triangle ibpA$ and $\triangle ibpB$ strains were obtained from Nara Institute of Science and Technology in Japan. *E. coli* MC4100- $\triangle ibpAB$ strain is a generous gift from Professor Baynex in Washington University in USA. *E. coli* DH5 α cells were purchased from Transgen Company in Beijing.

2.2. Plasmid construction and protein expression

The DNA fragments containing *ibpA/B* or the truncation mutant genes were amplified by PCR from the genomic DNA of *E. coli* BW25113. The amplified DNA fragments were inserted into the pBAD expression vector after digested with Ncol and HindlII. The generated plasmids were then transformed into target strains for expressing the recombinant proteins under the induction of 0.02% arabinose.


2.3. Detection of protein degradation in cells

In vivo degradation was performed using the methods as reported earlier [36]. In brief, cells were grown at 37 °C in a water-bath shaker to OD_{600} of 0.6 and subjected to heat shock of 45 °C for 30 min. Spectinomycin was then added (at a final concentration of 400 µg/ml) to the cell cultures to stop protein translation. Cells were continuously incubated at 45 °C or 30 °C for varying length of time before lysed and analyzed by SDS–PAGE. Immunoblotting of IbpA and IbpB and their variants were performed using a polyclonal antibody against both IbpA and IbpB [43]. The TnaA protein, as an internal control for sample loading, was immunoblotted using a polyclonal antibody against TnaA (produced in our own laboratory [42]).

3. Results

3.1. The respective slow and fast in vivo degradation rates of lbpA and lbpB are synchronized when they are co-expressed in E. coli under both heat shock and normal conditions

In the earlier study [36], Bissonnette et al examined the Lon-mediated in vitro degradation of IbpA/IbpB and the in vivo

Fig. 1. Slow and fast *in vivo* degradation rates respectively for lbpA and lbpB were synchronized when they were co-expressed. Immunoblotting results of endogenously (Panel A) or exogenously (Panels B and C) expressed lbpA and lbpB in cells under indicated genetic backgrounds, using a polyclonal antibody against both lbpA and lbpB [43]. The cells, in which lbpA and lbpB were individually or simultaneously expressed, were heat shocked at 45 °C and maintained at 45 °C for indicated time before lysed and subjected to SDS-PAGE and immunoblotting analysis. TnaA was detected as an internal control for sample loading.

degradation of IbpA at 37 °C. Here we probed the *in vivo* degradation of IbpA and IbpB in cells cultured at heat shock temperature (45 °C), given that both IbpA and IbpB were found to be hardly

Table 1Half-lives of IbpA/B and their variants in cells.^a

Protein	Half-life (min)									
	When expressed alone					Co-expressed with				
	Intact ^b	His	ΔN11	ΔC11	ΔΝ11ΔC11	Intactb	His ^c	ΔN11 ^c	ΔC11 ^c	ΔN11ΔC11 ^c
IbpA IbpB	NA/2214 24/24 ^d	2644 27	191 42	535 50	284 149	76/63	128/977 28/32	ND 84/88	ND NA/560	78/886 113/231

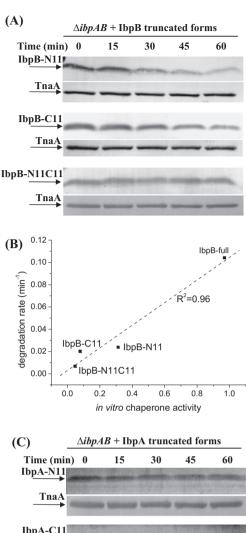
^a The half-life was calculated by analyzing the data presented in Fig. S2 using the linear decay model. NA: not available, reflecting the failure of linear decay regression analysis due to the extremely stability of the target proteins. ND, not determined, as a result of inability to separate lbpA from lbpB-N11 or lbpB-C11 on the SDS-gel due to their very close molecular sizes.

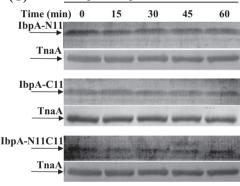
^b Two values respectively represent the half-lives of lbpA/lbpB at 45 °C and 30 °C. The half-life (76 min) obtained here for the co-expressed lbpA/lbpB is apparently longer than that (15 min) as determined previously by Bissonnette et al. [36], presumably due to the difference in bacterial strains (note: the wild type strain used in our study is BW25113 while theirs was not mentioned).

^c Two values respectively represent the half-lives of the target protein and of the co-expressed protein.

d The decay pattern of lbpB protein alone is apparently obeying the exponential decay model. In this context, the half-lives of lbpB alone at 45 °C and 30 °C would be 7.6 and 9.6 min, respectively.

detectable under normal conditions but substantially induced by heat shock [15,45]. Spectinomycin was added to the cell cultures to stop protein synthesis, which allowed us to chase the degradation of the pre-existed proteins. Data displayed in Fig. 1A indicate that the lbpA protein in $\Delta ibpB$ cells did not show significant degradation within 1 h (the upper panel), in contrast to the lbpB protein in $\Delta ibpA$ cells that was significantly degraded at the time point of 15 min (the middle panel). Notably, lbpA and lbpB as a whole were degraded at a moderate rate in wild type cells (the down panel of Fig. 1A).


To exclusively distinguish IbpA and IbpB, we attached a 6×His-tag at their C-terminals and individually expressed each as a recombinant protein in $\triangle ibpAB$, $\triangle ibpA$ or $\triangle ibpB$ cells. Data presented in Fig. 1B indicate that in ΔibpAB cells IbpA-His₆ did not show significant degradation while IbpB-His6 was rapidly degraded, consistent with the properties of their intact forms (Fig. 1A), Again, the exogenously expressed IbpA-Hise and endogenously present IbpB in $\triangle ibpA$ cells were found to be degraded in a largely synchronized manner at a moderate rate (the upper panel of Fig. 1C). Nevertheless, the exogenously expressed IbpB-His₆ and endogenously present lbpA in ∆ibpB cells did not show significant degradation (the down panel of Fig. 1C), presumably due to stabilization effect of the His-tag on the IbpB-His₆-IbpA hetero-oligomers. It should be pointed out that the protein level of recombinant IbpA-His₆ or IbpB-His₆ is comparable with that of endogenously expressed IbpA/IbpB (Fig. 1C), thus avoiding potential side-effect of protein over-expression. Together, the rapid degradation of IbpB is retarded in the presence of IbpA while the slow degradation of IbpA is accelerated in the presence of IbpB, resulting in the synchronization on their differential degradation rates.


We also examined whether the synchronized degradation of IbpA and IbpB, as observed at 45 °C (Fig. 1), would occur at normal temperatures. To this end, we kept *E. coli* cells expressing IbpA and/or IbpB at 45 °C for 30 min, added spectinomycin to stop protein synthesis, and then recovered the cells at 30 °C for varying length of time. Data presented in Fig. S1 demonstrate that the *in vivo* degradation rate at 30 °C of the individually expressed IbpB was much faster than that of IbpA, and such remarkably different degradations were synchronized when the two proteins were co-expressed, being similar with what took place at 45 °C (Fig. 1A).

We further performed semi-quantification analysis on the immunoblotting results and obtained the half-lives of IbpA and IbpB proteins (for details, see Fig. S2). Data presented in Table 1 indicate that, at both 45 °C and 30 °C, the half-life of the endogenous IbpA was >2000 min and IbpB around 24 min when they were individually expressed, and synchronized to 76 min when they were co-expressed. Notably, the half-lives of the individually expressed IbpA-His $_6$ and IbpB-His $_6$ were respectively comparable with those of the intact forms, and the co-expressed IbpB and IbpA-His $_6$ were synchronized at a half-life of around 30 min (Table 1).

3.2. The in vivo degradation rate of lbpB is significantly decreased by the deletion of its N- or C-terminal tails and is proportional to its chaperone activity

The N-terminal arm and C-terminal extension of sHSPs were widely reported to play crucial roles in the oligomerization and functional integrity of sHSPs [21,30,39–40,46–48], including the 11 residues at the N- and C-termini of lbpB as we reported earlier [40]. Here, the removal of these terminal tails was found to significantly suppress the degradation of lbpB (Fig. 2A), indicating their destabilization effect on lbpB. This is in line with the earlier report [36] that the purified full length lbpB protein was degraded by Lon at a 5-fold higher rate than did the truncated protein (i.e., the

Fig. 2. Truncation of the N- and the C-terminal tail significantly suppressed the lbpB degradation while a similar truncation limitedly accelerated the lbpA degradation. (A) Immunoblotting results of truncated lbpB (Panel A) and lbpA (Panel C) proteins (i.e., lacking the N- and/or C-terminal 11 residues) that were exogenously expressed in the ΔibpAB cells. Experimental conditions are similar with that as described in Fig. 1. (B) The degradation rate of lbpB is plotted against its *in vitro* chaperone activity, with a linear correlation being detected. The degradation rate for the full length and truncated lbpB was calculated as the reciprocal of their half-lives as shown in Table 1. The *in vitro* chaperone activity of each protein was calculated by measuring its capability in suppressing insulin aggregation, with the experimental data being adopted from our earlier report [40].

 α -crystallin domain of IbpB). Specifically, the half-lives of IbpB-N11, IbpB-C11 and IbpB-N11C11 were 42, 50 and 149 min, respectively (Table 1), which were significantly lower than that of the intact form (24 min) and were comparable with that of IbpB (76 min) in the presence of IbpA.

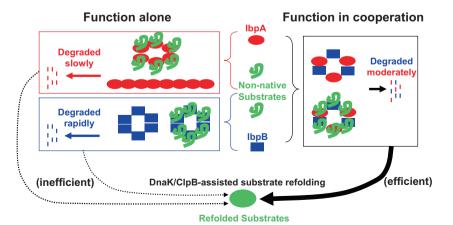
Since these IbpB truncated proteins were all found to exist as dimers [40] but are substantially different in their half-lives, the half-life of IbpB appears not to be determined by its oligomerization state. Strikingly, we observed a significantly positive correlation for IbpB between the degradation rate (reciprocal to

the half-life) and the *in vitro* chaperone-like activity in suppressing the aggregation of reduced insulin B chain (R^2 = 0.96; Fig. 2B), indicating that the rapid *in vivo* degradation of the IbpB protein is closely linked to its chaperone function and substrate-binding.

3.3. The extremely slow in vivo degradation of IbpA is somehow accelerated by the deletion of its N- or C-terminal tails

IbpA and IbpB share 52.2% amino acid sequence identity [34] and the removal of 11 residues from the N- or the C-terminal tail of IbpA was recently observed to dramatically decrease its chaperone activity and impair the fibril formation [21]. Here we observed that the removal of the 11 residues for IbpA somehow accelerated its *in vivo* degradation (Fig. 2C), indicating their stabilization effect on IbpA. The half-lives of IbpA-N11, IbpA-C11 and IbpA-N11C11, being around 200–500 min (Table 1), is lower than that of the full length protein (>2000 min) but significantly longer than that of the full length IbpA protein in the presence of IbpB (76 min). In addition, we found that the truncated IbpA proteins were able to suppress IbpB degradation and that the IbpB-N11C11 variant protein was able to accelerate IbpA degradation (Fig. S3 and Table 1), indicating that the N- or C-terminal tails of IbpA and IbpB are not essential for the reciprocal effect on the degradation of the counterpart.

4. Discussion


It was reported earlier that the Lon-mediated *in vitro* degradation rates for lbpA and lbpB were respectively slow and fast, and that lbpB was able to facilitate the degradation of lbpA under both *in vitro* and *in vivo* conditions [36]. Our study reveals that the *in vivo* degradation rates for lbpA and lbpB are also respectively slow and fast. Importantly, the simultaneously expressed lbpA and lbpB synchronize their remarkably different degradations at a moderate rate, under both normal (Fig. S1) and heat shock growth conditions (Fig. 1).

The slow and fast Lon-mediated *in vitro* degradation rates respectively for IbpA and IbpB [36] apparently stems from the difference in their oligomeric structures, given that the purified IbpA and IbpB proteins were found to exist respectively as fibrils [21,49] and as large spherical oligomers (>2 MDa) [40,50]. It follows that the slow *in vivo* degradation for IbpA, as observed here, may also be due to its formation of fibrils under *in vivo* conditions

[49]. In support of this, the truncated IbpA forms with slower degradation than the intact form (Fig. 2C) were reported to be less efficient than the intact form in forming fibrils under *in vitro* conditions [21]. In this context, the acceleration of IbpA degradation by IbpB is due to the loss of IbpA fibrils in the presence of IbpB and the subsequent formation of IbpA-IbpB spherical heterooligomers as reported earlier [19,21]. Interestingly, the *in vivo* degradation rate of IbpB in the absence of IbpA was found to be positively correlated with its *in vitro* chaperone activity (Fig. 2B), thus implicating that substrate-binding may promote the degradation of IbpB.

Our *in vivo* data, together with the earlier reported facts that Lon degrades substrate-bound lbpA/lbpB but not the substrate proteins under *in vitro* conditions [36] and that the substrate refolding from the lbpA-lbpB-substrate complexes is efficiently facilitated by DnaK/ClpB [14–15,19–21], indicate a dual-process scenario of lbpA/lbpB-degradation and substrate-refolding in cells, where these two processes cross-talk with each other. Further, we propose that the synchronized lbpA/lbpB degradation may play crucial roles for their known functional cooperation in substrate-refolding (as illustrated in Fig. 3).

First, the individually expressed IbpA, existing as IbpA fibrils and/or IbpA-substrate complexes, is degraded very slowly (left part in Fig. 3). Second, the individually expressed IbpB, existing as IbpB oligomers and/or IbpB-substrate complexes, is degraded very rapidly (left part in Fig. 3). However, the slow degradation of IbpA in the IbpA-substrate complexes and the rapid degradation of IbpB in the IbpB-substrate complexes may lead the substrates to be released too slowly and too rapidly, respectively, both of which are not optimal for the subsequent delivery of substrates to the DnaK-ClpB chaperone system. As a result, inefficient substrate refolding would occur as observed earlier [19-21]. Third, when they are co-expressed as naturally taking place in wild type cells, IbpA and IbpB form IbpA-IbpB-substrate complexes and/or IbpA-IbpB hetero-oligomers, and would be degraded in a synchronized manner at a moderate rate (right part in Fig. 3). Conceivably, this would allow the substrates to be released from the IbpA-IbpBsubstrate complexes at an appropriate rate, which is optimal for the loading and refolding capacity of the DnaK-ClpB chaperone system [19-21]. The synchronization in protein degradation for IbpA and IbpB is in agreement with their simultaneous expression [34,35,45,51–52], co-localization in protein aggregates [34,52–53] and hetero-oligomerization [19,21], all of which appear to be

Fig. 3. Schematic illustration of the synchronized lbpA/lbpB degradation mechanism underlying their functional cooperation for substrate refolding. The individually expressed lbpA, existing as fibrils and/or as lbpA-substrate complexes, is degraded very slowly such that the substrates cannot be effectively released. By contrast, the individually expressed lbpB, existing as lbpB-substrate complexes and/or as self-oligomers, is rapidly degraded, accompanied with a rapid release of substrates. The coexpressed lbpA and lbpB, existing as lbpA-lbpB-substrate complexes and/or as lbpA-lbpB hetero-oligomers, are degraded in a synchronized manner at a moderate rate, which, in turn, allows the substrates to be released at an appropriate rate for efficient refolding under the assistance of the DnaK-ClpB chaperone system.

linked to their synergistic promoting effect on the DnaK/ClpB-catalyzed substrate refolding [19–21].

Acknowledgments

We thank the Nara Institute of Science and Technology for providing the *E. coli* strains of BW25113, BW25113- $\Delta ibpA$ and BW25113- $\Delta ibpB$, and Professor Baneyx (Washington University, USA) for present the *E. coli* MC4100- $\Delta ibpAB$ strain. This work was supported by National Basic Research Program of China (973 Program) (No. 2012CB917300 to X.F. and Z.C.), the National Natural Science Foundation of China (No. 81300930 to X.S.; Nos. 31100559 and 31270804 to X.F.; No. 31170738 to Z.C.) and the National Natural Science Foundation of Jiangsu Province of China (No. BK20130232 to X.S.).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bbrc.2014.08.084.

References

- [1] M. Groll, M. Bochtler, H. Brandstetter, et al., Molecular machines for protein degradation, ChemBioChem 6 (2005) 222–256.
- [2] F.U. Hartl, A. Bracher, M. Hayer-Hartl, Molecular chaperones in protein folding and proteostasis, Nature 475 (2011) 324–332.
- [3] W.W. de Jong, G.J. Caspers, J.A. Leunissen, Genealogy of the alpha-crystallin-small heat-shock protein superfamily, Int. J. Biol. Macromol. 22 (1998) 151–162.
- [4] M. Haslbeck, T. Franzmann, D. Weinfurtner, et al., Some like it hot: the structure and function of small heat-shock proteins, Nat. Struct. Mol. Biol. 12 (2005) 842–846.
- [5] U. Jakob, M. Gaestel, K. Engel, et al., Small heat shock proteins are molecular chaperones, J. Biol. Chem. 268 (1993) 1517–1520.
- [6] E. Basha, H. O'Neill, E. Vierling, Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions, Trends Biochem. Sci. 37 (2012) 106– 117
- [7] M.V. Sudnitsyna, E.V. Mymrikov, A.S. Seit-Nebi, et al., The role of intrinsically disordered regions in the structure and functioning of small heat shock proteins, Curr. Protein Pept. Sci. 13 (2012) 76–85.
- [8] F. Narberhaus, Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network, Microbiol. Mol. Biol. Rev. 66 (2002) 64–93 (table of contents).
- [9] H. Nakamoto, L. Vigh, The small heat shock proteins and their clients, Cell. Mol. Life Sci. 64 (2007) 294–306.
- [10] E. Laskowska, E. Matuszewska, D. Kuczynska-Wisnik, Small heat shock proteins and protein-misfolding diseases, Curr. Pharm. Biotechnol. 11 (2010) 146–157.
- [11] L. Zeng, J. Tan, W. Lu, et al., The potential role of small heat shock proteins in mitochondria, Cell. Signal. 25 (2013) 2312–2319.
- [12] G.J. Lee, E. Vierling, A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein, Plant Physiol. 122 (2000) 189–198.
- [13] M. Ehrnsperger, S. Graber, M. Gaestel, et al., Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation, EMBO J. 16 (1997) 221–229.
- [14] L. Veinger, S. Diamant, J. Buchner, et al., The small heat-shock protein lbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network, J. Biol. Chem. 273 (1998) 11032–11037
- [15] A. Mogk, E. Deuerling, S. Vorderwulbecke, et al., Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation, Mol. Microbiol. 50 (2003) 585–595.
- [16] A. Mogk, C. Schlieker, K.L. Friedrich, et al., Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK, J. Biol. Chem. 278 (2003) 31033–31042.
- [17] A.G. Cashikar, M. Duennwald, S.L. Lindquist, A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104, J. Biol. Chem. 280 (2005) 23869–23875.
- [18] M. Haslbeck, A. Miess, T. Stromer, et al., Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104, J. Biol. Chem. 280 (2005) 23861–23868.
- [19] M. Matuszewska, D. Kuczynska-Wisnik, E. Laskowska, et al., The small heat shock protein IbpA of *Escherichia coli* cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state, J. Biol. Chem. 280 (2005) 12292–12298.

- [20] E. Ratajczak, S. Zietkiewicz, K. Liberek, Distinct activities of *Escherichia coli* small heat shock proteins lbpA and lbpB promote efficient protein disaggregation, J. Mol. Biol. 386 (2009) 178–189.
- [21] J. Strozecka, E. Chrusciel, E. Gorna, et al., Importance of N- and C-terminal regions of IbpA, *Escherichia coli* small heat shock protein, for chaperone function and oligomerization, J. Biol. Chem. 287 (2012) 2843–2853.
- [22] M. Munchbach, A. Nocker, F. Narberhaus, Multiple small heat shock proteins in Rhizobia, J. Bacteriol. 181 (1999) 83–90.
- [23] A. Bepperling, F. Alte, T. Kriehuber, et al., Alternative bacterial two-component small heat shock protein systems, Proc. Natl. Acad. Sci. U.S.A. 109 (2012) 20407–20412.
- [24] N. de Miguel, N. Braun, A. Bepperling, et al., Structural and functional diversity in the family of small heat shock proteins from the parasite *Toxoplasma gondii*, Biochim. Biophys. Acta 1793 (2009) 1738–1748.
- [25] E.R. Waters, The evolution, function, structure, and expression of the plant sHSPs, J. Exp. Bot. 64 (2013) 391–403.
- [26] S. Studer, F. Narberhaus, Chaperone activity and homo- and hetero-oligomer formation of bacterial small heat shock proteins, J. Biol. Chem. 275 (2000) 37212–37218.
- [27] K.B. Merck, P.J. Groenen, C.E. Voorter, et al., Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones, J. Biol. Chem. 268 (1993) 1046–1052.
- [28] F. Sobott, J.L. Benesch, E. Vierling, et al., Subunit exchange of multimeric protein complexes. Real-time monitoring of subunit exchange between small heat shock proteins by using electrospray mass spectrometry, J. Biol. Chem. 277 (2002) 38921–38929.
- [29] J. den Engelsman, S. Boros, P.Y. Dankers, et al., The small heat-shock proteins HSPB2 and HSPB3 form well-defined heterooligomers in a unique 3 to 1 subunit ratio, J. Mol. Biol. 393 (2009) 1022–1032.
- [30] M.R. Leroux, R. Melki, B. Gordon, et al., Structure-function studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides, J. Biol. Chem. 272 (1997) 24646–24656.
- [31] X. Fu, W. Jiao, Z. Chang, Phylogenetic and biochemical studies reveal a potential evolutionary origin of small heat shock proteins of animals from bacterial class A, J. Mol. Evol. 62 (2006) 257–266.
- [32] O.V. Bukach, A.S. Seit-Nebi, S.B. Marston, et al., Some properties of human small heat shock protein Hsp20 (HspB6), Eur. J. Biochem. 271 (2004) 291–302.
- [33] E.V. Mymrikov, A.S. Seit-Nebi, N.B. Gusev, Heterooligomeric complexes of human small heat shock proteins, Cell Stress Chaperones 17 (2012) 157–169.
- [34] S.P. Allen, J.O. Polazzi, J.K. Gierse, et al., Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in *Escherichia coli*, J. Bacteriol. 174 (1992) 6938–6947.
- [35] S.E. Chuang, V. Burland, G. Plunkett 3rd, et al., Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in *Escherichia coli*, Gene 134 (1993) 1–6.
- [36] S.A. Bissonnette, I. Rivera-Rivera, R.T. Sauer, et al., The lbpA and lbpB small heat-shock proteins are substrates of the AAA+ Lon protease, Mol. Microbiol. 75 (2010) 1539–1549.
- [37] L. Gu, A. Abulimiti, W. Li, et al., Monodisperse Hsp16.3 nonamer exhibits dynamic dissociation and reassociation, with the nonamer dissociation prerequisite for chaperone-like activity, J. Mol. Biol. 319 (2002) 517–526.
- [38] Z. Chang, T.P. Primm, J. Jakana, et al., Mycobacterium tuberculosis 16-kDa antigen (Hsp16.3) functions as an oligomeric structure in vitro to suppress thermal aggregation, J. Biol. Chem. 271 (1996) 7218–7223.
- [39] X. Fu, H. Zhang, X. Zhang, et al., A dual role for the N-terminal region of Mycobacterium tuberculosis Hsp16.3 in self-oligomerization and binding denaturing substrate proteins, J. Biol. Chem. 280 (2005) 6337–6348.
- [40] W. Jiao, M. Qian, P. Li, et al., The essential role of the flexible termini in the temperature-responsiveness of the oligomeric state and chaperone-like activity for the polydisperse small heat shock protein lbpB from *Escherichia* coli, J. Mol. Biol. 347 (2005) 871–884.
- [41] W. Jiao, W. Hong, P. Li, et al., The dramatically increased chaperone activity of small heat-shock protein IbpB is retained for an extended period of time after the stress condition is removed, Biochem. J. 410 (2008) 63–70.
- [42] X. Fu, X. Shi, L. Yan, et al., In vivo substrate diversity and preference of small heat shock protein lbpB as revealed by using a genetically incorporated photocross-linker, J. Biol. Chem. 288 (2013) 31646–31654.
- [43] X. Fu, X. Shi, L. Yin, et al., Small heat shock protein IbpB acts as a robust chaperone in living cells by hierarchically activating its multi-type substrate-binding residues, J. Biol. Chem. 288 (2013) 11897–11906.
- [44] W. Jiao, P. Li, J. Zhang, et al., Small heat-shock proteins function in the insoluble protein complex, Biochem. Biophys. Res. Commun. 335 (2005) 227–231.
- [45] C.S. Richmond, J.D. Glasner, R. Mau, et al., Genome-wide expression profiling in *Escherichia coli* K-12, Nucleic Acids Res. 27 (1999) 3821–3835.
- [46] K.B. Merck, J. Horwitz, M. Kersten, P. Overkamp, M. Gaestel, H. Bloemendal, W.W. de Jong, Comparison of the homologous carboxyl-terminal domain and tail of alpha-crystallin and small heat shock protein, Mol. Biol. Rep. 18 (1993) 209–215.
- [47] K.K. Kim, R. Kim, S.H. Kim, Crystal structure of a small heat-shock protein, Nature 394 (1998) 595–599.
- [48] R.L. van Montfort, E. Basha, K.L. Friedrich, et al., Crystal structure and assembly of a eukaryotic small heat shock protein, Nat. Struct. Biol. 8 (2001) 1025–1030.
- [49] E. Ratajczak, J. Strozecka, M. Matuszewska, et al., IbpA the small heat shock protein from *Escherichia coli* forms fibrils in the absence of its cochaperone IbpB, FEBS Lett. 584 (2010) 2253–2257.

- [50] J.R. Shearstone, F. Baneyx, Biochemical characterization of the small heat shock protein lbpB from *Escherichia coli*, J. Biol. Chem. 274 (1999) 9937–9945.
 [51] L.C. Gaubig, T. Waldminghaus, F. Narberhaus, Multiple layers of control govern
- [51] L.C. Gaubig, T. Waldminghaus, F. Narberhaus, Multiple layers of control govern expression of the *Escherichia coli* ibpAB heat-shock operon, Microbiology 157 (2011) 66–76.
- [52] D. Kuczynska-Wisnik, S. Kedzierska, E. Matuszewska, et al., The Escherichia coli small heat-shock proteins lbpA and lbpB prevent the aggregation of
- endogenous proteins denatured in vivo during extreme heat shock, Microbiology 148 (2002) 1757–1765.
- [53] E. Laskowska, A. Wawrzynow, A. Taylor, IbpA and IbpB, the new heat-shock proteins, bind to endogenous *Escherichia coli* proteins aggregated intracellularly by heat shock, Biochimie 78 (1996) 117–122.